马尔科夫链蒙特卡洛(MCMC)

在以贝叶斯方法为基础的机器学习技术中,通常需要计算后验概率,然后通过最大后验概率(MAP)等方法进行参数推断和决策。然而,在很多时候,后验分布的形式可能非常复杂,这个时候寻找其中的最大后验估计或者对后验概率进行积分等计算往往非常困难,此时可以通过采样的方法来求解。

作为本系列文章的组成部分,也作为你阅读本文所必须的预备知识,希望各位读者确认已经对如下文章所谈之话题了然于心:

欢迎关注白马负金羁的CSDN博客,为保证公式、图表得以正确显示,强烈建议你从该地址上查看原版博文。本博客主要关注方向包括:数字图像处

相关推荐
©️2020 CSDN 皮肤主题: 精致技术 设计师:CSDN官方博客 返回首页
实付 19.90元
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、C币套餐、付费专栏及课程。

余额充值