卡尔曼滤波(Kalman Filter)

机器学习之术 专栏收录该内容
35 篇文章 1281 订阅 ¥99.00 ¥19.90

一、引言


下面我们引用文献【1】中的一段话作为本文的开始:


想象你在黄昏时分看着一只小鸟飞行穿过浓密的丛林,你只能隐隐约约、断断续续地瞥见小鸟运动的闪现。你试图努力地猜测小鸟在哪里以及下一时刻它会出现在哪里,才不至于失去它的行踪。或者再想象你是二战中的一名雷达操作员,正在跟踪一个微弱的游移目标,这个目标每隔10秒钟在屏幕上闪烁一次。或者回到更远的从前,想象你是开普勒,正试图根据一组通过不规则和不准确的测量间隔得到的非常不精确的角度观测值来重新构造行星的运动轨迹。在所有这些情况下,你都试图根据随对问变化并且带有噪声的观察数据去估计物理系统的状态(例如位置、速度等等)。这个问题可以被形式化表示为时序概率模型上的推理,模型中的转移模型描述了运动的物理本质,而传感器模型则描述了测量过程。为解决这类问题,人们发展出来了一种特殊的表示方法和推理算法——卡尔曼滤波。


二、基本概念


  • 28
    点赞
  • 9
    评论
  • 27
    收藏
  • 一键三连
    一键三连
  • 扫一扫,分享海报

相关推荐
©️2020 CSDN 皮肤主题: 精致技术 设计师:CSDN官方博客 返回首页
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、C币套餐、付费专栏及课程。

余额充值